Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 40(8): 111254, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36001965

RESUMO

Allosteric activation and silencing of leukocyte ß2-integrins transpire through cation-dependent structural changes, which mediate integrin biosynthesis and recycling, and are essential to designing leukocyte-specific drugs. Stepwise addition of Mg2+ reveals two mutually coupled events for the αXß2 ligand-binding domain-the αX I-domain-corresponding to allostery establishment and affinity maturation. Electrostatic alterations in the Mg2+-binding site establish long-range couplings, leading to both pH- and Mg2+-occupancy-dependent biphasic stability change in the αX I-domain fold. The ligand-binding sensorgrams show composite affinity events for the αX I-domain accounting for the multiplicity of the αX I-domain conformational states existing in the solution. On cell surfaces, increasing Mg2+ concentration enhanced adhesiveness of αXß2. This work highlights how intrinsically flexible pH- and cation-sensitive architecture endows a unique dynamic continuum to the αI-domain structure on the intact integrin, thereby revealing the importance of allostery establishment and affinity maturation in both extracellular and intracellular integrin events.


Assuntos
Integrina alfaXbeta2 , Cátions Bivalentes , Integrina alfaXbeta2/química , Integrina alfaXbeta2/metabolismo , Ligantes , Ligação Proteica , Estrutura Terciária de Proteína
2.
Microbiologyopen ; 10(1): e1154, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33650800

RESUMO

Membrane proteins represent major drug targets, and the ability to determine their functions, structures, and conformational changes will significantly advance mechanistic approaches to both biotechnology and bioremediation, as well as the fight against pathogenic bacteria. A pertinent example is Mycobacterium tuberculosis (H37Rv), which contains ~4000 protein-coding genes, with almost a thousand having been categorized as 'membrane protein', and a few of which (~1%) have been functionally characterized and structurally modeled. However, the functions and structures of most membrane proteins that are sparsely, or only transiently, expressed, but essential in small phenotypic subpopulations or under stress conditions such as persistence or dormancy, remain unknown. Our deep quantitative proteomics profiles revealed that the hypothetical membrane protein 730 (Hyp730) WP_010079730 (protein ID Mlut_RS11895) from M. luteus is upregulated in dormancy despite a ~5-fold reduction in overall protein diversity. Its H37Rv paralog, Rv1234, showed a similar proteomic signature, but the function of Hyp730-like proteins has never been characterized. Here, we present an extensive proteomic and transcriptomic analysis of Hyp730 and have also characterized its in vitro recombinant expression, purification, refolding, and essentiality as well as its tertiary fold. Our biophysical studies, circular dichroism, and tryptophan fluorescence are in immediate agreement with in-depth in silico 3D-structure prediction, suggesting that Hyp730 is a double-pass membrane-spanning protein. Ablation of Hyp730-expression did not alter M. luteus growth, indicating that Hyp730 is not essential. Structural homology comparisons showed that Hyp730 is highly conserved and non-redundant in G+C rich Actinobacteria and might be involved, under stress conditions, in an energy-saving role in respiration during dormancy.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Proteínas de Membrana/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Sequência de Aminoácidos , Perfilação da Expressão Gênica , Genoma Bacteriano/genética , Infecção Latente/genética , Porinas/genética , Porinas/metabolismo , Proteômica/métodos , RNA Mensageiro/genética , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...